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We consider the open shop, job shop, and flow shop scheduling problems with integral processing times. We give polynomial-time
algorithms to determine if an instance has a schedule of length at most 3, and show that deciding if there is a schedule of length at
most 4 is NP-complete. The latter result implies that, unless # = NP, there does not exist a polynomial-time approximation
algorithm for any of these problems that constructs a schedule with length guaranteed to be strictly less than 5/4 times the optimal
length. This work constitutes the first nontrivial theoretical evidence that shop scheduling problems are hard to solve even approxi-

mately.

hop scheduling problems form a class of scheduling
w.J models in which each job consists of several opera-
tions. In particular, we are given a set of jobs $ = {J;, .. .,
J,}, a set of machines M = {M,,..., M, }, and a set of
operations 0 = {0,,..., O,}; each operation O, € O
belongs to a specific job J; € $ and must be processed on a
specific machine M; € A for a given amount of time p,,
which is a nonnegative integer. At any time, at most one
operation can be processed on each machine, and at most
one operation of each job can be processed. In this paper
we consider nonpreemptive models: each operation must
be processed to completion without interruption.

Shop models are further classified based on ordering
restrictions for the operations of a job. In an open shop,
the operations of each job may be processed in any order.
In a job shop, the operations of each job must be pro-
cessed in a given order specific to that job. A flow shop 1s a
job shop in which each job has exactly one operation on
each machine, and the order in which each job is pro-
cessed by the machines is the same for all jobs. In all three
models, we define the length C, ., of a schedule as the time

at which all operations are completed, and C,,,, as the
length of the shortest feasible schedule. Due to the inte-
grality of the processing times, any schedule can easily be
converted into one at least as good in which all completion
times are integral; from now on, we shall restrict attention
to such schedules.

Shop scheduling models have long been identified as
having a number of important practical applications, dat-
ing back to the work of Johnson (1954). Job shop models,
in particular, have become notorious for their computa-
tional difficulty, since even quite small instances have re-
sisted solution by the full range of computational
techniques that have been developed for combinatorial op-
timization problems over the past quarter century. Be-
cause of these characteristics, shop scheduling models
have received a great deal of attention in the computa-
tional scheduling literature. Among the approaches that
have been used to obtain good solutions are simple greedy
construction methods, iterated local search procedures
(Adams et al. 1988, Applegate and Cook 1991), simulated

annealing (Van Laarhoven et al. 1992), and taboo search
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(Dell’Amico and Trubian 1993); see Vaessens et al. (1996)
for a survey of these methods. Branch-and-bound optimi-
zation algorithms have been based on one-machine lower
bounds (Bratley et al. 1973; Lageweg et al. 1977; Carlier
and Pinson 1989, 1990), surrogate duality (Fisher et al.
1983), and polyhedral methods (Balas 1985, Applegate and
Cook 1991).

For each of the three shop scheduling models, the prob-
lem of finding a schedule of minimum length is strongly
N¢-hard, even for severely restricted versions of these
problems. For a summary of these results, the reader is
referred to the survey of Lawler et al. (1993).

In contrast, nothing was known up to now about the
computational complexity of deciding whether a given in-
stance has a schedule of at most a given constant length.
An example of such a problem is the question, “Given an
instance, does there exist a schedule of length no more
than 37” We have resolved this 1ssue: in each of the open
shop, job shop, and flow shop scheduling models, deciding
if there is a schedule of length at most 3 is in 9, whereas
deciding if there is a schedule of length at most 4 is
NP-complete.

The N%-completeness results imply that finding near-
optimal shop schedules 1s N@-hard. Suppose that, for
some p < 5/4, we have a polynomial-time p-approximation
algorithm for one of these problems, that is, an algorithm
that runs 1n polynomial time and is guaranteed to produce
a schedule of length at most pC ... If there exists a sched-
ule of length at most 4, then our algorithm will return a
schedule of length less than 5/4 - 4 = 5, that is, of length at
most 4; otherwise, it will, of course, produce a schedule of
length at least 5. Hence, a schedule of length at most 4
exists i1f and only 1f our approximation algorithm finds such
a schedule. In other words, the supposed algorithm solves
an N%-complete problem in polynomial time. It follows
that, for any p < 5/4, there i1s no polynomial-time
p-approximation algorithm, unless = N®.

Our results constitute the first nontrivial theoretical evi-
dence that shop scheduling problems are hard to solve
even approximately. The best result known previously is
that no tully polynomial approximation scheme could exist
for any such problem, unless ? = NP. (A fully polynomial
approximation scheme takes a problem instance and an
€ > ( as input, and produces a schedule of length at most
(1 + €)Ch.x in time polynomial in the size of the instance
and 1/e.) This is a straightforward consequence of the
strong N -hardness of these problems (Garey and John-
son 1979, p. 141).

Some positive results are known about approximate
shop scheduling. A result of Racsmény (see Bardny and
Fiala 1982, Shmoys et al. 1994) implies that a simple list
scheduling rule for open shops produces a schedule of
length less than 2C7, ,,. For job shops and flow shops, the
best known polynomial-time approximation algorithm de-
livers a schedule of length O(log® m/log log m)CL .

(Shmoys et al. 1994, Schmidt et al. 1995). Any attempt to
close the gaps by proving stronger negative results would
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require a new approach, since deciding if there 1s a sched-
ule of length at most 3 is in P.

1. OPEN SHOP SCHEDULING

We shall present a polynomial-time algorithm to decide if
a given instance of the open shop scheduling problem has a
schedule of length at most 3. Furthermore, we shall prove
that 1t 1s N%-complete to decide if there 1s an open shop
schedule of length at most 4.

It 1s easy to give a polynomial-time algorithm in case all
operations have length O or 1. This special case can be
reduced to the problem of coloring the edges of a bipartite
graph G so that no two edges with a common endpoint
have the same color. Let G = (V,, V>, E) where V; = M,
Vo, =%, and E = {¢;, = (M,, J;): operation O, of J; is on M,
and p, = 1}; note that if some job has more than one
operation of length 1 on a machine, then G is a multi-
graph. Any edge-coloring of G with the colors {1, 2, ...,
t} can be viewed as a schedule in the following way: if ¢, is
colored ¢, then O, is scheduled to start at time ¢ — 1 and
to complete at time ¢; all operations of length 0 are sched-
uled at time 0. Conversely, any open shop schedule of
length C,,., can be similarly translated to yield a coloring
that uses C,« colors. Since an optimal edge-coloring of a
bipartite graph can be computed in polynomial time (see,
e.g., Bondy and Murty 1976), we see that this special case
of the open shop scheduling problem is in 2.

If we wish to decide if an arbitrary instance of the prob-
lem has a schedule of length at most 3, we need only be
concerned with operations of length at most 3. Moreover,
since operations of length 0 or 3 are trivial to schedule, we
can focus on instances with operations of length 1 or 2
only. We will show that this problem can be reduced to a
constrained bipartite edge-coloring problem, which can be
solved using an algorithm for the weighted bipartite
matching problem.

Consider a job J; for which one of its operations, O,, is
to be processed on M; for two time units. The main idea
behind the algorithm is that in any schedule of length 3, O,
1s always processed throughout the time interval [1, 2], plus
either [0, 1] or [2, 3]. Hence, any unit-length operation of

J; cannot be processed in the interval [1, 2]. Similarly, any

unit-length operation to be processed on M, cannot be
processed in the interval [1, 2]. Thus, a schedule is equiv-
alent to an edge-coloring of the graph G as defined above,
where any edge corresponding to an operation of length 2
1s colored either 1 or 3 to reflect whether it is processed
during [0, 2] or [1, 3], respectively, and any edge corre-
sponding to a unit-length operation constrained to be pro-
cessed 1n either [0, 1] or [2, 3] by an operation of length 2

1s colored either 1 or 3 as well. The following is a more
precise statement of the algorithm:

Step 1. For each machine in M, check if the total pro-
cessing requirement of its operations is at most 3; if not,
output “no schedule” and halt.
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Step 2. For each job in $, check if the total processing
requirement of its operations is at most 3; if not, output
“no schedule” and halt.

Step 3. Schedule all operations of length 0 or 3 to start at
time 0.

Step 4. Form the bipartite graph G = (V, V,, E) where
Vi=WM,V, =%, and E = {¢, = (M,, J;): operation O, of
J;1sonM; and p, = 1 or 2}. To each edge ¢, € E assign a
weight p,.

Step 5. Define a set § C E of special edges containing

each edge of weight 2 and each edge that has a common
endpoint with an edge of weight 2.

Step 6. Decide if G can be edge-colored with the colors
{1, 2, 3} such that each special edge is colored either 1 or
3. It no such coloring exists, then output “no schedule.”
Otherwise, for each edge colored ¢ that corresponds to an
operation of length 1, schedule that operation to be pro-
cessed from time ¢ — 1 to c¢. The remaining edges, which
correspond to operations of length 2, are colored either 1
or 3; schedule the operations corresponding to color 1 to

be processed from time O to 2, and the others from time 1
to 3.

Only Step 6 is nontrivial to implement. The key idea is to
first 1dentify those edges assigned color 2. Let T be the set
of nodes in G of degree 3. In any suitable edge-coloring of
G, the edges assigned color 2 form a matching M in G’ =
(V3, V>, E — §) that covers T, that is, each node in 7 is an
endpoint of some edge in M. We show that, conversely, the
existence of such a matching M yields a suitable coloring of
G: Color each edge in M with color 2, and consider the
graph of uncolored edges G" = (V4, V,, E — M). G" is a
bipartite graph of maximum degree 2, and hence it can be
edge-colored with two colors, 1 and 3. This yields the de-
sired coloring. It is easy to give a polynomial-time algo-
rithm to decide if G’ has a matching that covers 7. For
example, if each edge is assigned a weight equal to the
number of its endpoints in 7, then we can simply apply any

algorithm that finds a maximum weight matching (see, e.g.,
Lovasz and Plummer 1986).

Theorem 1. The problem of deciding if there is an open shop
schedule of length at most 3 is in .

We shall now prove the N%-completeness of deciding if
a schedule of length at most 4 exists by a reduction from
the following N%-complete problem:

MONOTONE-NOT-ALL-EQUAL-3SAT

Instance: Set U of variables, collection C of clauses over U
such that each clause has size 3 and contains only unne-
gated variables.

Question. Is there a truth assignment for U such that each

clause in C has at least one true variable and at least one
false variable?

MONOTONE-NOT-ALL-EQUAL-3SAT can be shown to be NP-
complete by a reduction from NOT-ALL-EQUAL-3sAT (Garey
and Johnson 1979, p. 259) in which all literals X; are re-
placed by new variables y;, and clauses of the form y; \/ x;
\/ x; are added.

We give a polynomial-time reduction from this problem
to open shop scheduling such that the optimal schedule
length for an instance is 4 if and only if the MONOTONE-
NOT-ALL-EQUAL-3SAT Instance is satisfiable. Suppose we are
given an instance of MONOTONE-NOT-ALL-EQUAL-3SAT with
U= {x,...,x,} and C = {c¢{,..., ¢}, in which each
variable x; appears ¢; times. For notational convenience,
we view the kth occurrence of x; as the variable x,. Fur-
thermore, let o(x;) denote the next occurrence of x;, cy-
clically ordered; that is, o(x;,) = x;;, where / = k mod ¢; +
1. We transform this instance into the following instance
of the open shop scheduling problem. For each variable
X, W€ construct two machines, M ,(x;;) and Mz(x;.). We
construct three types ot jobs:

1. For each variable x;., we construct an assignment job
with operations A(x;,) and B(x;,), each of length 2, which
are to be processed by M ,(x;) and Mg(x;.), respectively.

2. For each variable x;,, we construct a consistency job
to ensure that its value is equal to the value of its next
occurrence, o(x;). It has two operations B(x;,) and A(x;)
of length 2 and 1, respectively, which must be processed by
Mp(xy) and M 4(o(x;))-

3. For each clause ¢ = (x \/ y \/ z), we construct a
clause job with three unit-length operations, 7T(x), T(y),
and 7(z), to be processed on M (x), M (y), and M ,(z),
respectively.

The optimal schedule must have length at least 4 in
order to run the assignment jobs. In the following discus-
sion, we will refer to the operation of an assignment job
(consistency job, clause job) for a particular machine as
the assignment operation (consistency operation, clause
operation) for that machine.

The intuition behind the reduction is that each assign-
ment job will denote the truth assignment of an occurrence
of a variable. Consider the assignment job corresponding
to x;. It has operations of length 2 on M _,(x;) and
Mg(x;). In a schedule of length 4, one of these assignment
operations must run on one machine from time 0 to 2 and
the other operation must run on the other machine from
time 2 to 4. Hence, we can consider each assignment job as
a switch, which can be set in one of two positions depend-
ing on whether the job runs first on M ,(x;;) or on Mg(x;).
We will say that x;, is true if the job runs first on M ,(x;,),
and false if it runs first on Mgz(x;.). The consistency job for
X prevents assignment jobs from being scheduled at the
same time on machines Mg(x;) and M (o(xy)), thus en-
suring that the truth assignment of the occurrences x;, and
o(x;) will be the same. Finally, given the assignment
and consistency jobs, no clause job will be able to have all
of 1ts three operations scheduled on machines that process
variables with the same value. This property will enforce
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Figure 1. Open shop schedule corresponding to (x; \/ x,
V X4) /N (X1 \/ X3 \/ X4).
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the not-all-equal constraint. Figure 1 illustrates the
reduction.

Theorem 2. The problem of deciding if there is an open shop
schedule of length at most 4 is NP-complete.

Proof. We show that the instance of MONOTONE-NOT-ALL-
EQUAL-3SAT 1s satisfiable if and only if the open shop in-
stance constructed has a schedule of length 4.

Suppose that there is a schedule of length 4. We first
prove that in any such schedule, fori = 1,..., u, either
every machine M (x;) (k = 1, ..., t;) processes its assign-
ment operation from time 0 to 2, or every machine M ,(x;,)
processes 1ts assignment operation from time 2 to 4. If this
1s not the case, then there exist i and k such that M (x;,)
processes 1ts assignment operation from time 0 to 2, and
M 4(o(x;)) processes its assignment operation from time 2
to 4. But Mz(x;,) processes its assignment operation from
time 2 to 4 as well. The consistency job for x;,, must be
processed on both Mgz(x;) and M (o(x;.)), and both of
these machines are processing other operations from time
2 to 4. Hence, this schedule does not complete by time 4,
which is a contradiction.

We now construct a satisfying assignment. For each vari-
able x;, set x; to be true if the assignment operation for
M 4(x;1) Tuns from time O to 2, and false otherwise. By the
argument above, a clause operation has been scheduled
sometime between time 2 and 4 in case the variable corre-
sponding to that operation has been set true, and some-
time between time 0 and 2 in case the variable has been set
false. Because each clause job has three unit-length oper-
ations which have been scheduled in nonoverlapping time
~periods, not all of its operations can correspond to true
variables and not all of its operations can correspond to
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false variables. Hence, at least one variable of each clause
must be true and at least one variable must be false.

Now suppose that the instance of MONOTONE-NOT-ALL-
EQUAL-3SAT 1S satisfiable. We construct a schedule of

length 4 1n the following way. If x; is true in the satisfying
assignment, then we schedule the assignment operations
for all machines M ,(x;,) from time O to 2 and the ones for

Mg(x;,) from time 2 to 4; if x; is false, then we do it the

other way around. Therefore, for each occurrence x,,

M ,(x;;.) is idle from time 2 to 4 if x; iIs true, whereas it is

idle from time 0 to 2 if x;. is false. For each clause, the
clause operation corresponding to the first true variable of
the clause can be scheduled from time 2 to 3, and the
operation corresponding to the first false variable can be
scheduled from time 0 to 1; the third clause operation can
be scheduled from time 3 to 4 if the corresponding vari-
able 1s true, and from time 1 to 2 if it is false. To schedule
the consistency jobs, suppose, without loss of generality,
that x; 1s true. Pick any machine Mz(x;;.); by our construc-
tion thus far, Mg(x;.) is idle from time O to 2. Schedule the
consistency operation B(xfk) in this interval. In addition,
M 4(o(x;)) is idle either from time 2 to 3, or from time 3
to 4. Hence we can schedule the consistency operation

A(x,k) without conflict in one of these intervals. All consis-

tency jobs can be scheduled in this way. [ ]

Corollary 3. For any p < 5/4, there does not exist a

polynomial-time p-approximation algorithm for the open

shop scheduling problem, unless P = NP.

2. JOB SHOP AND FLOW SHOP SCHEDULING

First we present a polynomial-time algorithm to decide if a
given 1nstance of the job shop scheduling problem has
a schedule of length at most 3. Since the flow shop is a
special case of the job shop, the algorithm can be applied
to the flow shop scheduling problem as well. We then
prove that deciding if there is a job shop schedule of
length at most 4 1s N®-complete, and finally show how to
extend this result to flow shop scheduling.

We shall show that deciding if there is a job shop sched-
ule of length 3 can be reduced to the 2sAT problem, which
IS solvable in polynomial time (see, e.g., Garey and John-
son 1979, p. 259). Recall that the 2sAT problem is to decide
whether a logical formula in which each clause contains at
most two variables has a satisfying assignment. For ease of
exposition, we use clauses of the form (x; = x;), which is
equivalent to (X; \/ x;).

The key to solving the problem is to schedule jobs with
total processing time 2 or 3; once these are scheduled, the
remaining jobs of total processing time 0 or 1 can easily be
scheduled, as long as the total processing requirement of
each machine is at most 3. For the longer jobs, each oper-
ation has at most two possible starting times. We construct
a 28AT formula F with variables of the form x;, where
setting x;, to be true will have the interpretation that oper-
ation O; 1s scheduled to start at time . An operation is said
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to be a beginning operation if it is not preceded in its job
by a positive-length operation; an operation is said to be
an ending operation if it is not a beginning operation and is
not succeeded 1n its job by a positive-length operation. The
reduction works as follows:

1. For each machine in M, check if the total processing
requirement of its operations is at most 3; if not, let F be
the unsatisfiable formula (x)(X), and halt.

2. For each job in @, check if the total processing re-
quirement of its operations is at most 3; if not, let F be the
unsatisfiable formula (x)(x), and halt.

3. For each beginning operation O; of length 0, add the
singleton clauses x;q, X;1, Xj5, Xj3 to F. “

4. For each ending operation O; of length 0, add the
singleton clauses X;q, X;;, X5, X;3 to F.

5. For each operation O; in a job of total length 3, the
starting time ¢ is determined for any schedule of length 3;
add to F the singleton clause x; and, for all t' # ¢, the
singleton clauses ;.. |

6. Next consider all remaining operations in jobs of to-
tal length 2. We construct clauses to ensure that, for each
job, its operations are scheduled in the correct order.

(a) For each such operation O; of length 2, add the
clauses (x5 \/ Xj1), (Xj0 = X;1), Xjn, X3 to F.

(b) For each such operation O; of length 1, if O; is a
beginning operation, add the clauses (x; \/ X;;),
(Xj0 = Xj1), Xjp, Xj3, as well as (x;; = X;,), where
operation O, is the other unit-length operation
of its job.

(c) For each such operation O; of length 1, if O; is an
ending operation, add the clauses (x;; \/ Xj3), (X
= ij)s j-ej'()s' ij'

(d) For each such operation O; of length 0 (so that
O; 1s neither a beginning nor an ending opera-
tion), add the clauses (x;; \/ x;2), (X;1 = X;2), X0,
X3, as well as (x;; = Xi), (X2 = xp), where
operations O, and O, are the unit-length opera-
tions of this job that must precede and follow O,
respectively; if the immediate successor O;. of O,
is of length O, then add the clauses (x;; = x;;)
and (x;; = X;:5).

7. We finally add clauses to ensure that each machine
processes at most one operation at a time.

(a) Let O; be any operation of length p; > 0 in a job
of length 2 or 3; suppose that 1t is to be processed
on M.. If it starts at time ¢, then S, ={t' € Z: t <
t'" < min{t + p; 3}} is the set of disallowed
starting times for other positive-length operations
on M;. Add the clause (x; = X,/) for each ¢’ € §,
and each other positive-length operation O, on
M;.

(b) Let O; be any operation of length p; = 2; suppose
that it is to be processed on M,. If it starts at time
t,then 7, = {¢t' € Z: t <t’ < min{¢t + p;, 3}} is
the set of disallowed starting times for operations
of length 0 on M,;. Add the clause (x;, = X,,/) for

each t' € T, and each operation O, of length O
on M,.

Theorem 4. The 2SAT formula F is satisfiable if and only if
there is a job shop schedule of length 3.

Proof. Suppose that there is a schedule of length 3. We
can modify the schedule so that each beginning operation
of length 0 is scheduled at time 0, and each ending opera-
tion of length 0 is scheduled at time 3. For each variable x;,
that occurs 1n F, set 1t to be true if operation O; begins at
time ¢ in the modified schedule, and false otherwise. It is
immediate that each clause in F is satisfied. |

Suppose that F has a satisfying assignment. We first
observe that this yields a feasible schedule of length 3 for
all jobs of total length 0, 2 or 3. As suggested above, 1if x;
is true in the satisfying assignment, then operation O; is
scheduled to start at time £. The clauses formed in steps 3
to 6 ensure that, for each operation O;, at most one of x;,
X;1, Xj» and Xx;; 18 true, and that, for each job, its operations
are processed in the specified order. The clauses formed in
step 7 ensure that no machine is assigned to process two
operations simultaneously. We next extend this schedule to
include all jobs of total length 1. For each such job, each
operation of length O is either a beginning or an ending op-
eration, and hence can be scheduled at either time 0 or time
3; for the unit-length operation, one unit of time must be
available on its machine, since the operations on each
machine have total length at most 3. [ ]

Corollary 5. The problem of deciding if there is a job shop
schedule of length at most 3 is in %P.

To prove that deciding if there is a job shop schedule of
length at most 4 1s N2P-complete, we construct a reduction
from a restricted version of 3sAT in which each clause
contains at most three literals and each variable occurs
(negated or not) at most three times in the logical formula.
We call this problem 3-BOUNDED-3SAT; it is NP-complete
(Garey and Johnson 1979, p. 259).

With each instance of 3-BOUNDED-3SAT we associate an
Instance of the job shop scheduling problem with the prop-
erty that a schedule of length 4 exists if and only if the
3-BOUNDED-3SAT instance is satisfiable. Without loss of
generality, we assume that each clause contains at least
two variables and that each variable occurs at least once
negated and at least once unnegated: if a clause contains
only one literal, that literal must be true, and if a literal
does not appear in the formula, then the complementary
literal may be set true; this process yields a smaller for-
mula that satisfies our assumptions. In constructing the
scheduling instance, we need to distinguish between
the first and second unnegated (or negated) occur-
rence of each literal; thus we refer to the kth occurrence of
the literal x; as x;,, and of X; as X;,, for k = 1, 2.

We specify the instance constructed by giving, for each
job, 1its sequence of operations, and, for each machine, the
set of operations that it must process; all operations are of
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unit length. With each variable x; we associate four jobs
J(x) = (B(x), M(x), E(x)), for x € {x;;, X;5, X;1, X1»}; that
i1s, B(x), M(x), and E(x) are, respectively, the first, second,
and third operations of J(x), and are called its beginning,

middle, and ending operations. There will be the following
classes of machines.

4
|

Assignment machines

3
l
l
|
l
l

1. For each variable x;, there are two assignment ma-
chines: the first processes operations B(x;;) and B(X;;),
whereas the second processes B(x;,) and B(X;,).

2. For each variable x;, there are two consistency ma-
chines: the first processes operations M(x;;) and M(X,,),
whereas the second processes M(x;,) and M(X;,).

3. For each clause c, there is a clause machine; its con-
struction depends on whether ¢ has 2 or 3 literals. If c = (x
\/ ¥), we Introduce a clause machine that processes E(x)
and E(y). If ¢ = (x \/ y VV 2), we also introduce dummy
jobs and dummy machines. There are three dummy jobs
j(w) = (f)’(w), E(w)), for w € {x, y, z}. The clause ma-
chine for ¢ processes B(x), B( y), and E(z) For each w &€
{x, y, z}, there is a dummy machine that processes E(w)
and E(w).

4. For each literal x € {x;,, X;,} not occurring in the
formula, we construct a garbage machine that processes
only the operation E(x).

The intuition behind the reduction is that schedules of
length 4 are constrained in the following way. Each begin-
ning operation must start at either time 0 or 1. The assign-
ment machines ensure that, for each x;, one of the
operations B(x;) and B(X,;,) is scheduled at time 0 and
the other at time 1; this provides the means to set x; to be
either true or false. The consistency machines ensure that
the two copies of each literal are set identically. Each
ending operation must start at either time 2 or 3. Only
those corresponding to true literals can be scheduled to
start at time 2, and the clause machines ensure that each
clause has at least one literal whose ending operation

starts at time 2. Figure 2 summarizes the elements of the
reduction.

Theorem 6. The problem of deciding if there is a job shop
schedule of length at most 4 is NP-complete.

Proof. We show that the instance of 3-BOUNDED-3SAT is
satisfiable if and only if the job shop instance constructed
has a schedule of length 4.

Suppose that the instance of 3-BOUNDED-3SAT is satisfi-
able. We construct a schedule of length 4 in the following
way. For each true literal, its corresponding beginning and
middle operations are scheduled to start at times 0 and 1,
respectively, whereas the beginning and middle operations
corresponding to false literals are started at times 1 and 2,
respectively. For each clause ¢, we select one of its true
literals; such a literal exists since the entire formula is
~ true. We schedule the ending operations corresponding to
these literals to start at time 2, whereas all other ending

operations are started at time 3. The dummy operations
can then be scheduled appropriately.

Consistency machines

Clause machines

Clause (x v y)

Clause (xvyvz) B(x), Bly), Bz)

Dummy machines

(Garbage machines

I
For each x not in formula E(x)

Figure 2. Reduction from 3-bounded-3sat to job shop
schedule.

Now suppose that there is a job shop schedule of length
4. We will show that the schedule must be essentially of
the form just constructed, and hence we will be able to
extract a satisfying assignment for the original formula.
Each beginning operation must start at either time 0 or 1,
each middle operation must start at either time 1 or 2,
and each ending operation must start at either time 2 or 3.
Furthermore, for any literal x, if E(x) starts at time 2, then
B(x) starts at time 0. For each x;, B(x;) and B(X;, ) are
processed on the same machine, and hence one of these
must start at time 0 and the other at time 1.

We show next that B(x;;) and B(x,,) are processed si-
multaneously. Assume, without loss of generality, that
B(x;;) starts at time 1. This implies that M(x,,) starts at
time 2, so that, on the same consistency machine, M(X;,)
starts at time 1. This in turn implies that B(X,,) starts at
time 0, and hence B(x;,) starts at time 1, at the same time
as B(x;;). Notice that because B(x;;) and B(x;,) are sched-
uled at the same time, B(X;;) and B(X,,) are scheduled at
the same time too.

We set the variable x; true if and only if B(x;,) starts at
time 0; we wish to show that this is a satisfying assignment.
Consider a clause c. If ¢ = (x \/ y), then there is a clause
machine that processes E(x) and E(y). One of these must
start at time 2, which implies that the corresponding begin-
ning operation starts at time 0, and the associated literal
has been set true. If ¢ = (x \/y \/ 2), then there is a clause
machine that processes the dummy operations B(x), B(y)
and B(z). Since these operations are succeeded by E (x),
E(y), and E(z), respectively, none of them can start at
time 3. Hence, for some w € {x, y, z}, B(w) starts at time
2, so that E(w) starts at time 3. But then, on the same
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dummy machine, E(w) starts at time 2. This implies that
we have set the literal w to be true. []

Corollary 7. For any p < 5/4, there does not exist a
polynomial-time p-approximation algorithm for the job shop
scheduling problem, unless P = NP.

The construction of Theorem 6 is easily strengthened to
yield the same result for flow shop scheduling. As is sug-
gested in Figure 2, the machines can be ordered so that
the operations of each job are consistent with that order:
first take all assignment machines, followed by all consis-
tency machines, then all clause machines for clauses of size
2, the remaining clause machines, the dummy machines,
and finally the garbage machines. In a flow shop, each job
must have one operation on each machine. The instance
just specified can easily be filled out with additional zero-
length operations; since all of the original operations are

of unit length, these new operations can be scheduled triv-
ially, without affecting the overall schedule.

Theorem 8. The problem of deciding if there is a flow shop
schedule of length at most 4 is NP-complete.

Corollary 9. For any p < 5/4, there does not exist a
polynomial-time p-approximation algorithm for the flow shop
scheduling problem, unless P = NP.
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